

5. The reaction below was studied at 250°C.

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

At equilibrium, the partial pressures of the gases are as follows: $PCl_5 = 2.0 \times 10^{-2}$ atm, $PCl_3 = 4.2 \times 10^{-2}$ atm. and $Cl_2 = 4.2 \times 10^{-4}$ atm. What is the value of K_p for the reaction?

(3)
$$K_p = \frac{P_{PCL_3}P_{CE}}{PCL_5} = \frac{(4.2 \times 10^{-2})(4.2 \times 10^{-4})}{2.0 \times 10^{-2}} = 8.8 \times 10^{-4}$$

6.At 2010 K, the equilibrium constant, K_c , for the following reaction is 4.0×10^{-4} .

$$N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$$

If the equilibrium concentrations of N₂ and O₂ are 0.25 mol/L and 0.33 mol/L, what is the equilibrium concentration of NO?

7. We place 0.064 mol N₂O₄(g) in a 4.00 L flask at 200. After reaching equilibrium, the concentration of NO₂(g) is 0.0030 M. What is K_c for the reaction below?

M. What is
$$K_c$$
 for the reaction below?
 $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$ $2x = 0.0030 M$ $K_c = \frac{[0.0030]^2}{0.0145}$
 $X = 0.0015 M$ $X = 0.0015 M$ $X = 0.016 - 0.0015 = 0.0145$ $X = 0.016 - 0.0015 = 0.0145$

8.A mixture of 0.200 mol NO and 0.200 mol CO₂ is placed in a 1.00 L flask and allowed to reach equilibrium at a given temperature. Analysis of the equilibrium mixture indicates that 0.067 mol of CO is present. Calculate K_c for the reaction.

$$(4) \begin{array}{c} NO(g) + CO_{2}(g) \rightleftharpoons NO_{2}(g) + CO(g) \\ \hline (4) & I & O, 200 & O, 200 & O & O \\ \hline (4) & C & -X & +X & +X \\ \hline (5) & C & -X & -X & +X & +X \\ \hline (6) & C & -X & O, 200 - X & X & X \\ \hline (7) & X = & O, 067 & O, 133 \\ \hline (7) & O, 200 - O, 067 = & O, 133 \\ \hline (8) & O, 200 - O, 067 = & O, 133 \\ \hline (9) & C & CO(g) & CO(g) \\ \hline (9) & C & CO(g) & CO(g) \\ \hline (9) & C & CO(g) & CO(g) \\ \hline (9) & C & CO(g) & CO(g) \\ \hline (9) & C & CO(g) & CO(g) \\ \hline (9) & C & CO(g) & CO(g) \\ \hline (9) & C & CO(g) & CO(g) \\ \hline (9) & C & CO(g) & CO(g) \\ \hline (9) & C & CO(g) & CO(g) \\ \hline (9) & C & CO(g) & CO(g) \\ \hline (9) & C & CO(g) & CO(g) \\ \hline (1) & C & CO(g) & CO(g) \\ \hline (1) & C & CO(g) & CO(g) \\ \hline (1) & C & CO(g) & CO(g) \\ \hline (1) & C & CO(g) & CO(g) \\ \hline (1) & C & CO(g) & CO(g) \\ \hline (1) & C & CO(g) & CO(g) \\ \hline (1) & C & CO(g) & CO(g) \\ \hline (1) & C & CO(g) & CO(g) \\ \hline (1) & C & CO(g) \\ \hline$$

1. Write the expression for K_c for the reaction below.

$$Mg_3(PO_4)_2(s) \implies 3 Mg^{2+}(aq) + 2 PO_4^{3-}(aq)$$

$$K_{c} = \left[M_{g}^{2}\right]^{3} \left[PO_{4}^{3}\right]^{2}$$

2. Write a balanced chemical reaction which corresponds to the following equilibrium constant expression.

$$(2) \qquad K_{p} = \frac{P_{\text{NOBI}}}{P_{\text{NO}}P_{\text{BR}_{2}}^{1/2}} \qquad NO_{(g)} + \frac{1}{2} Br_{2}(g) \implies NOBr(g)$$

$$2 \operatorname{SO}_3(g) \rightleftharpoons 2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \qquad \mathsf{R}_{\mathsf{p}} = \frac{\mathsf{1}_{\mathsf{SO}_3} \mathsf{1}_{\mathsf{O}_2}}{\mathsf{1}_{\mathsf{SO}_3}}$$

the equilibrium constant, K_p , is 1.32 at 627°C. What is the equilibrium constant for the reaction below?

The equinorium constant,
$$K_p$$
, is 1.32 at 627°C. What is the equinorium $SO_3(g) \Rightarrow SO_2(g) + 1/2 O_2(g)$

The equinorium constant, K_p , is 1.32 at 627°C. What is the equinorium $SO_3(g) \Rightarrow SO_2(g) + 1/2 O_2(g)$

The equinorium constant, K_p , is 1.32 at 627°C. What is the equinorium $SO_3(g) \Rightarrow SO_2(g) + 1/2 O_2(g)$

The equinorium constant, K_p , is 1.32 at 627°C. What is the equinorium $SO_3(g) \Rightarrow SO_3(g) \Rightarrow SO_2(g) + 1/2 O_2(g)$

The equinorium constant, K_p , is 1.32 at 627°C. What is the equinorium $SO_3(g) \Rightarrow SO_3(g) \Rightarrow SO_$

4. The oxidation of sulfur dioxide produces sulfur trioxide.

$$2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$$

Calculate the value of K_p , given that K_c for the reaction is 2.3×10^4 at 999 K. ($R = 0.08206 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$)

$$(3) K_p = K_c (RT)^{\Delta h}$$

$$= 2.3 \times 10^4 (0.0821.999)^{-1} = 280 \text{ or } 2.8 \times 10^2$$